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Abstract

In this paper, we investigate the numerical simulation of particulate flows using a new moving mesh method combined
with the multigrid fictitious boundary method (FBM) [S. Turek, D.C. Wan, L.S. Rivkind, The fictitious boundary method
for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations. Chal-
lenges in Scientific Computing, Lecture Notes in Computational Science and Engineering, vol. 35, Springer, Berlin,
2003, pp. 37-68; D.C. Wan, S. Turek, L.S. Rivkind, An efficient multigrid FEM solution technique for incompressible flow
with moving rigid bodies. Numerical Mathematics and Advanced Applications, ENUMATH 2003, Springer, Berlin, 2004,
pp- 844-853; D.C. Wan, S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the
fictitious boundary method, Int. J. Numer. Method Fluids 51 (2006) 531-566]. With this approach, the mesh is dynami-
cally relocated through a (linear) partial differential equation to capture the surface of the moving particles with a relatively
small number of grid points. The complete system is realized by solving the mesh movement and the partial differential
equations of the flow problem alternately via an operator-splitting approach. The flow is computed by a special ALE for-
mulation with a multigrid finite element solver, and the solid particles are allowed to move freely through the computa-
tional mesh which is adaptively aligned by the moving mesh method in every time step. One important aspect is that
the data structure of the undeformed initial mesh, in many cases a tensor-product mesh or a semi-structured grid consisting
of many tensor-product meshes, is preserved, while only the spacing between the grid points is adapted in each time step so
that the high efficiency of structured meshes can be exploited. Numerical results demonstrate that the interaction between
the fluid and the particles can be accurately and efficiently handled by the presented method. It is also shown that the pre-
sented method significantly improves the accuracy of the previous multigrid FBM to simulate particulate flows with many
moving rigid particles.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of particulate flows or the motion of small rigid particles in a viscous liquid is one
of the main focuses of engineering research and still a challenging task in many applications. Depending on the
area of application, these types of problems arise frequently in numerous settings, such as sedimenting and
fluidized suspensions, lubricated transport, hydraulic fracturing of reservoirs, slurries, understanding solid—
liquid interaction, etc.

Several numerical simulation techniques for the particulate flows have been developed over the past dec-
ade. In these methods, the fluid flow is governed by the continuity and momentum equations, while the par-
ticles are governed by the equation of motion for a rigid body. The flow field around each individual
particle is resolved, the hydrodynamic force between the particle and the fluid is obtained from the solu-
tions. Hu, Joseph and coworkers [1,2], Galdi and Heuveline [3] as well as Maury [4] developed a finite ele-
ment method based on unstructured grids to simulate the motion of a large number of rigid objects in
Newtonian and viscoelastic fluids. This approach is based on an arbitrary Lagrangian—Eulerian (ALE) tech-
nique. Both the fluid and solid equations of motion are incorporated into a single coupled variational equa-
tion. The hydrodynamic forces and torques acting on the particles are eliminated in the formulation. The
nodes on the particle surface move with the particle, while the nodes in the interior of the fluid are com-
puted using Laplace’s equation to guarantee a smoothly varying distribution of the nodes. At each time
step, a new mesh is generated when the old one becomes too distorted, and the flow field is projected onto
the new mesh. In this scheme, the positions of the particles and grid nodes are updated explicitly, while the
velocities of the fluid and the solid particles are determined implicitly. In the case of 2D, the remeshing of
the body-fitted meshes can be done by available grid generation software, but in the more interesting case of
a full 3D simulation, the problem of efficient body-fitted grid generation is not yet solved in a satisfying
manner yet.

In a series of papers by Glowinski, Joseph and coauthors [5-8], they proposed a distributed Lagrange mul-
tiplier (DLM)/fictitious domain method for the direct numerical simulation of large number of rigid particles
in fluids. In the DLLM method, the entire fluid-particle domain is assumed to be a fluid and the particle domain
is constrained to move with the rigid motion. The fluid-particle motion is treated implicitly using a combined
weak formulation in which the mutual forces cancel. This formulation permits the use of a fixed structured
grid thus eliminating the need for remeshing the domain. In [9-12], we presented a similar, but different mul-
tigrid fictitious boundary method (FBM) for the detailed simulation of particulate flow. The method is based
on a fixed (unstructured) FEM background grid. The motion of the solid particles is modeled by the Newton—
Euler equations. Based on the boundary conditions applied at the interface between the particles and the fluid
which can be seen as an additional constraint to the governing Navier—Stokes equations, the fluid domain can
be extended into the whole domain which covers both fluid and particle parts. The FBM starts with a coarse
mesh which may contain already many of the geometrical fine-scale details, and employs a (rough) boundary
parametrization which sufficiently describes all large-scale structures with regard to the (geometric) boundary
conditions. Then, all fine-scale features are treated as interior objects such that the corresponding components
in all matrices and vectors are unknown degrees of freedom which are implicitly incorporated into all iterative
solution steps.

An advantage of these fictitious domain methods over the generalized standard Galerkin finite element
method is that they allow a fixed grid to be used, eliminating the need for remeshing, and they can be
handled independently from the flow features. Much progress has been made for adopting the fictitious
domain, respectively, boundary methods to simulate particulate flows, yet the quest for more accurate
and efficient methods remains active, particularly for many particles of different shape and size: An under-
lying problem when adopting the fictitious domain methods is that the boundary approximation is of low
accuracy only. Particularly in 3D, the ability of the fictitious domain methods to deal accurately with the
interaction between fluid and rigid particles is greatly limited unless very fine meshes are used. One remedy
could be to preserve the mesh topology, for instance as generalized tensor-product or blockstructured
meshes, while a local alignment of the positions of the grid points with the physical boundary of the solid
is achieved by a moving mesh process such that the boundary approximation error can be significantly
decreased.
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Many have come to recognize mesh adaption as an effective tool for simulating sharp fronts or moving
interfaces and reducing numerical dispersion and oscillation. It has been demonstrated that significant
improvements in accuracy and efficiency can be gained by adapting the mesh nodes so that they remain
concentrated in regions of sharp fronts or interfaces. There are many existing mesh adaptive methods to
achieve this purpose. Generally speaking, mesh adaptivity is usually applied in the form of local mesh
refinement or through a continuous mesh mapping. In locally adaptive mesh refinement methods [13],
an adaptive mesh is obtained by adding or removing points to achieve a desired level of accuracy. This
allows a systematic error analysis. However, local refinement methods require more complicated data struc-
tures, compared to simple tensor-product meshes, and fairly technical methods to communicate informa-
tion among different levels of hierarchical refinements. In the mapping approach [14,15], the mesh points
are moved continuously in the whole domain to concentrate in regions where the solution has the largest
variations or moving interfaces locate. These solution-adaptive or geometry-adaptive meshes can be used to
compute accurately the sharp variation or the moving interface problems. They also have the additional
advantage of allowing the use of standard solvers since all computations are performed in the same logical
domain using a uniform mesh.

Over the past decade, several mesh adaptive techniques have been developed, namely the so-called /-, p-
and r-methods. The first two do static remeshing; here, the #-method does automatic refinement or coarsening
of the spatial mesh based on a posteriori error estimates or error indicators and the p-method takes higher or
lower order approximations locally as needed. In contrast, the r-method (also known as moving mesh method)
relocates grid points in a mesh having a fixed number of nodes in such a way that the nodes remain concen-
trated in regions of rapid variation of the solution or corresponding moving interfaces. The r-method is often a
dynamic method which means that it uses time stepping or pseudo-time stepping approaches to construct the
desired transformation. The r-method or moving mesh method differs from the /-, and p-methods in that the
former keeps the same number of mesh points throughout the entire solution process, while the later have to
treat hanging node problems. Thus, the size of computation and the data structures are fixed, which enables
the r-method much easier to be incorporated into most CFD codes without the need for changing the system
matrix structures and adding special interpolation procedures. The r-method has received more attention due
to some new developments which clearly demonstrate its potential for problems such as those having moving
interfaces [16-20]. Nevertheless, it is clear that the preferred method of choice in future might be of r—A—p-type,
that means combining all these adaptive techniques.

The primary objective of this paper is to combine the multigrid fictitious boundary method (FBM) [9-11]
with a prototypical version of a new moving mesh method described in [20] for the simulation of particulate
flow and to analyse the accuracy of the proposed combining method, comparing its results with the previous
pure multigrid fictitious boundary method without mesh adaptation. However, due to the preliminary char-
acter of these studies, we do not concentrate on efficiency aspects so far. As we have shown in [11], the use
of the multigrid FBM does not require to change the mesh during the simulations, although the rigid par-
ticles vary their positions. The advantage is that no expensive remeshing has to be performed while a fixed
mesh can be used such that in combination with appropriate data structures and fast CFD solvers very high
efficiency rates can be reached. However, the accuracy for capturing the surfaces of solid particles is only of
first order which might lead to accuracy problems. For a better approximation of the particle surfaces, we
adopt a deformed grid, created from an arbitrary block-structured mesh, in which the topology is preserved:
only the grid spacing is changed such that the grid points are concentrated near the surface of the rigid par-
ticles. Here, the solution of additional linear Poisson problems in every time step is required for generating
the deformed grid, which means that the additional work is significantly less than the main fluid-particle
part.

The paper is organized as follows. In Section 2, the physical models together with collision models for
particulate flows are described. The moving mesh method and examples are presented in Section 3. The
detailed numerical schemes and algorithms including the multigrid FBM, ALE formulation, time and space
discretizations, as well as the complete numerical algorithm are given in Section 4. Prototypical numerical
experiments are implemented and computational results will be presented in Section 5. Improvements of
accuracy over the previous pure multigrid FBM will be emphasized. The concluding remarks will be given
in Section 6.
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2. Descriptions of the physical models
2.1. Governing equations

In our numerical studies of particle motion in a fluid, we will assume that the fluids are immiscible and
Newtonian. The particles are assumed to be rigid. Let us consider the unsteady flow of N particles with mass
M;(i=1,...,N)in a fluid with density pr and viscosity v. Denote Q(¢) as the domain occupied by the fluid at
time ¢, and Q¢) as the domain occupied by the ith particle. So, the motion of an incompressible fluid is gov-
erned by the following Navier—Stokes equations in Q(¢),

pf(%_’_uVu)—VJ:O? V-u=0 VtE(O,T)7 (1)

where o is the total stress tensor in the fluid phase defined as
o = —pl+ i[Vu+ (Vu)']. (2)

where I is the identity tensor, u = p¢- v, p is the pressure and u is the fluid velocity. Let Q7 = Q¢(¢r) U {Q,-(t)}?il
be the entire computational domain which shall be independent of ¢. Dirichlet- and Neumann-type boundary
conditions can be imposed on the outer boundary I' = 0Qf). Since Q= Q¢) and Q; = Q,(¢) are always
depending on z, we drop ¢ in all following notations.

The equations that govern the motion of each particle are the following Newton—Euler equations, i.e., the
translational velocities U; and angular velocities w, of the ith particle satisfy

MidU[:(AMi)g‘FFi‘FF/-y Ii%"'wix (L) =T, (3)
dr ! dr

where M, is the mass of the ith particle; I; is the moment of the inertia tensor; AM; is the mass difference
between the mass M, and the mass of the fluid occupying the same volume; g is the gravity vector; F; are col-
lision forces acting on the ith particle due to other particles which come close to each other. We assume that
the particles are smooth without tangential forces of collisions acting on them; the details of the collision mod-
el will be discussed in the following subsection. F; and 7 are the resultants of the hydrodynamic forces and the
torque about the center of mass acting on the ith particle which are calculated by

F,»:(—l)/m ¢ -ndr’, Ti:(_1)/69v(x_x,}) x (¢ -m)dI,, (4)

where o is the total stress tensor in the fluid phase defined by Eq. (2), X, is the position of the mass center of the
ith particle, 0Q; is the boundary of the ith particle, n is the unit normal vector on the boundary 0€Q; pointing
outward to the flow region. The position X; of the ith particle and its angle 0, are obtained by integration of the
kinematic equations

dX; do;
! = U,‘ —l = i+ 5
de S T (5)
No-slip boundary conditions are applied at the interface 0€Q; between the ith particle and the fluid, i.e., for any
X € Q,, the velocity u(X) is defined by

uX) =U;+o; x ( X-=X). (6)

2.2. Collision models

For handling more than one particle, a collision model is needed to prevent the particles from interpene-
trating each other. Glowinski, Joseph and coauthors [7,8] proposed repulsive force models in which an arti-
ficial short-range repulsive force between particles is introduced keeping the particle surfaces more than one
element (the range of the repulsive force) apart from each other. In these models, overlapping of the regions
occupied by the rigid bodies is not allowed since conflicting rigid body motion constraints from two different
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particles are not imposed at the same velocity nodes. However, in numerical calculations, the overlapping of
particles might happen: for solving this problem, Joseph et al. [28] suggested a modified repulsive force model
in which the particles are allowed to come arbitrarily close and even to overlap slightly each other. When con-
flicting rigid body motion constraints from two different particles are applied onto a velocity node, then the
constraint from the particle that is closer to that node is used. A repulsive force is only applied when the par-
ticles overlap each other.

Following such ideas, we examine a modified collision model with a new definition of short range repulsive
forces which cannot only prevent the particles from getting too close, it can also deal with the case of particles
overlapping each other when numerical simulations bring the particles very close due to unavoidable numer-
ical truncation errors. For the particle-particle collisions, the repulsive force is determined as,

0 for d,',j>R,‘+Rj+,0,
F = 7 (X = X))(R; + R; — di) for dij < Ri + R;, (7)
i(Xi — XJ)(RI +Rj +p— dl'd')z for R; +RJ < d,'ﬂj < R,‘ +Rj +p,

where R; and R; are the radius of the ith and jth particle, X; and X; are the coordinates of their mass centers,

d;; = |X; — X| is the distance between their mass centers, p is the range of the repulsive force (usually p = 0.5-
2.5Ah, Ah is the local mesh size), ep and ¢, are small positive stiffness parameters for particle-particle collisions.
If the fluid is sufficiently viscous, and p = Ak as well as p;/ps are of order 1 (p; is the density of the ith particle,
pris the fluid density), then we can take ep = (Ah)? and €p > Ah in the calculations. For the particle-wall col-
lisions, the corresponding repulsive force reads,

0 for d; > 2R, + p,
PV = { £ (X = X)(2R, — d) for d) < 2R;, (8)
L(X; = X)(2R: +p —d)’ for 2R; < d; < 2R; + p,

where X/ is the coordinate vector of the center of the nearest imaginary particle P, located on the boundary
wall I' w.r.t. the ith particle, d; = |X; — X/| is the distance between the mass centers of the ith particle and
the center of the imaginary particle P, ey is a small positive stiffness parameter for particle-wall collisions,
usually ew = ep/2 and €}, = €;,/2 in our calculations. Then, the total repulsive forces (i.e. collision forces) ex-
erted on the ith particle by the other particles and the walls can be expressed as follows:

Z F, +F. (9)

J=Lj#
3. Moving mesh method

In this section, we briefly describe the moving mesh method which will be adopted and coupled with our
multigrid fictitious boundary method (FBM) [9-11] to solve numerically the particulate flow equations.
The details of the moving mesh method can be found in [20].

The moving mesh problem can be treated to constructing a transformation ¢, x = ¢(¢) from the compu-
tational space (with coordinate &) to the physical space (with coordinate x). There are several types of moving
mesh methods, generally computing x by minimizing a variational form or computing the mesh velocity v = x,
using a Lagrangian-like formulation. The moving mesh method we will employ belongs to the velocity-type
class, which is based on Liao’s work [16-19] and Moser’s work [21]. This method has several advantages: only
linear Poisson problems on fixed meshes are to be solved, monitor functions can be obtained directly from
error distributions or distance functions, mesh tangling can be prevented, and the data structure from the
starting mesh is preserved.

Suppose g(x) (area function) to be the area distribution on the undeformed mesh, while f{x) (monitor func-
tion) in contrast describes the absolute mesh size distribution of the target grid, which is independent of the
starting grid and chosen according to the need of the physical problem. Then, the transformation ¢ can be
computed via the following four steps:
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1. Compute the scaling factors ¢r and ¢, for the given monitor function f{x) > 0 and the area function g using

1 1
cf/gmdx:cg/gmdx: 1], (10)

where Q C R? is a computational domain, and f{x) ~ local mesh area. Let f and g denote the reciprocals of
the scaled functions fand g, i.e.,

~ Cr - Cy
=—, ===, 11
f=7 &=5 (11)
2. Compute a grid-velocity vector field v: Q@ — R” by solving the Poisson problem
—div(v(x)) = f(x) —g(x), x€Q and v(x)-n=0, x €0Q, (12)

where n is the outer normal vector of the domain boundary 02 which may consist of several boundary
components.
3. For each grid point x, solve the following ODE system:

W) o)), 0<i<, p(x,0) = x (13)
with
VI(%S) = U(y) , YELQ, s€ [Oa 1] (14)

Csf) + (1 - 920
4. Get the new grid points via
@(x) == o(x, 1). (15)

Here, we give two examples for the generation of deformed grids using the described moving mesh method.
Fig. 1 shows the case of two objects with one rectangle and one ellipse inside a square domain. The starting
mesh presented in Fig. 1(a) is equidistant, and we want to generate a deformed mesh which can align the grid
lines near both the surface of the ellipse and the rectangle. We choose the monitor function f{x) as a function
of Ad, here Ad is the minimum distance of grid points to the both surfaces of the two solid bodies of the ellipse
and the rectangle. Fig. 1(b) shows the generated deformed mesh. We can see that the grid lines are concen-
trated around the surfaces of the two solid bodies.

Fig. 2 presents another case with two ellipses in a long channel. The starting mesh and positions of the two
ellipses are given in Fig. 2(a). If we choose the monitor function f{x) as in the above case, i.e. to be a function
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(a) Equidistant mesh (b) Deformed mesh

Fig. 1. Example of a deformed mesh generated from an equidistant mesh.
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Fig. 2. Second example of deformed meshes generated from an equidistant mesh.

of Ad, with Ad being the minimum distance of grid points to both surfaces of the two solid ellipses, then the
generated deformed mesh is shown in Fig. 2(b): we can see that there are still too many grid lines remaining in
the lower part of the channel; however, there is no solid body. Moreover, the grid points in the gap between
the two ellipses are not distributed very well. Next, we try to use another monitor function f{x), a digit filter
function Ad, x Ad,, here Ad; and Ad, are the distances of the grid points to the surface of both ellipses; then, a
much better deformed mesh can be generated. We can see in Fig. 2(c) that the grid lines are more concentrated
around the surfaces of both ellipses and in the region of the gap between the two ellipses, and there are less
grid lines staying in the down part of the channel, too. It is clearly shown that the quality of the grid distri-
bution is depending on the choice of the monitor function which is subject of further research.

4. Numerical method
4.1. Multigrid FEM fictitious boundary method

The details of the multigrid FEM fictitious boundary method have been presented in [9-11]. For illustra-
tion, a brief description is given below.

The fictitious boundary method (FBM) is based on a multigrid FEM background grid which covers the
whole computational domain 7 and can be chosen independently from the particles of arbitrary shape, size
and number. It starts with a coarse mesh which may already contain many of the geometrical details of €;
(i=1,...,N), and it employs a fictitious boundary indicator (see [9]) which sufficiently describes all fine-scale
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structures of the particles with regard to the fluid-particle matching conditions of Eq. (6). Then, all fine-scale
features of the particles are treated as interior objects such that the corresponding components in all matrices
and vectors are unknown degrees of freedom which are implicitly incorporated into all iterative solution steps
(see [10]). Hence, by making use of Eq. (6), we can perform calculations for the fluid in the whole domain Q.
The considerable advantage of the multigrid FBM is that the total mixture domain Q7 does not have to
change in time, and can be meshed only once. The domain of definition of the fluid velocity u is extended
according to Eq. (6), which can be seen as an additional constraint to the Navier—Stokes equations (1), i.e.,

V-ou=0 (a) for X € Qr,
pr(@4u-Vu) -V-6=0 (b) forXeQ, (16)

ot

uX)=U+w; x(X-X;) (¢) forXeQ, i=1,...,N.

For the study of interactions between the fluid and the particles, the calculation of the hydrodynamic forces
acting on the moving particles is very important. From Eq. (4), we can see that the surface integrals on the wall
surfaces of the particles should be conducted for the calculation of the forces F; and 7;. However, in the pre-
sented multigrid FBM method, the shapes of the wall surface of the moving particles are implicitly imposed in
the fluid field. If we reconstruct the shapes of the wall surface of the particles, it is not only a time consuming
work, but also the accuracy is only of first order due to a piecewise constant interpolation from our indicator
function. For overcoming this problem, we perform the hydrodynamic force calculations using a volume
based integral formulation. To replace the surface integral in Eq. (4) we introduce a function o,

1 for X € Q,,
“i(x) = (17)
0 forXe QT \ Qi7

where X denotes the coordinates. The importance of such a definition can be seen from the fact that the gra-
dient of ; is zero everywhere except at the wall surface of the ith particle, and equals to the normal vector n; of
wall surface of the ith particle defined on the grid, i.e., n; = Va;. Then, the hydrodynamic forces acting on the
ith particle can be computed by

Fl:—/ - Vo de, Tl:—/ (X - X)) x (- Vo) dQ. (18)
Qr Qr

The integral over each element covering the whole domain Q7 can be calculated with a standard Gaussian
quadrature of sufficiently high order. Since the gradient Vo; is non-zero only near the wall surface of the
ith particle, thus the volume integrals need to be computed only in one layer of mesh cells around the ith par-
ticle, which leads to a very efficient treatment.

The algorithm of the (classical) multigrid FEM fictitious boundary method for solving the coupled system
of fluid and particles can be summarized as follows:

1. Given the positions and velocities of the particles, solve the fluid equations (16)(a) and (b) in the corre-
sponding fluid domain involving the position of the particles for the fictitious boundary conditions.

2. Calculate the corresponding hydrodynamic forces and the torque acting on the particles by using Eq. (18),
and compute the collision forces by Eq. (9).

3. Solve Eq. (3) to get the translational and angular velocities of the particles, and then obtain the new posi-
tions and velocities of the particles by Eq. (5).

4. Use Eq. (16)(c) to set the new fluid domain and fictitious boundary conditions, and solve for the new veloc-
ity and pressure of the fluid phase as described in step 1.

4.2. ALE formulation of the FBM

For a better approximation of the solid surfaces, we adopt the above described moving mesh method
such that we can preserve the mesh topology as generalized tensor-product or blockstructured meshes, while
a local alignment with the rigid body surface is reached. The moving mesh method is sometimes referred to
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as quasi-Lagrangian method. When the moving mesh method is applied to the multigrid FBM, a mesh
velocity Wy, in the convective term in Eq. (16)(b) should be introduced, i.c.,

o
pfa—l;-i-(u—wm)-Vu ~V.o=0 forXeQ (19)

so that no interpolation routines from old to new meshes is required since the grid topology is preserved.

In the literature this is also referred to as an arbitrary Lagrangian—Eulerian (ALE) formulation. Note that
the mesh velocities W,,, do not appear in the continuity equation, as a pressure-Poisson problem is solved to
satisfy the continuity equation in an outer loop. Care has to be taken to satisfy the geometric conservation law
(GCL), where the mesh velocity W,,, must be equal to the movement of the mesh velocity Ax during the time
step. Therefore, the mesh velocities W, should be calculated according to the nodal movement from the pre-
vious time step by

W, = 1 (x"H —x") (20)
m — At 3
where At is the time step size and n denotes the time step number.

In each time step, a new deformed mesh is generated based on a starting mesh, then the system matrices are
updated and the mesh velocity according to the new position of the deformed mesh nodes will be calculated.
Since the moving mesh method keeps the same number of mesh points throughout the entire solution process,
the size of computation and the data structure are fixed, which enables this method to be much easier to incor-
porate into most CFD codes without the need for changing the system matrix structures and for special inter-
polation procedures.

4.3. Time discretization by fractional-step-0 scheme

The fractional-step-0 scheme is a strongly A-stable time stepping approach; it possesses the full smoothing
property which is important in the case of rough initial or boundary data. It also contains only very little
numerical dissipation which is crucial in the computation of non-enforced temporal oscillations. A more
detailed discussion of these aspects can be found in [22,24]. We first semi-discretize Egs. (16)(a) and (19) in
time by the fractional-step-6 scheme. Given u” and the time step K = t,+; — ¢,, then solve for u= v and
p= p”“. In the fractional-step-0-scheme, one macro time step ¢, — t,+1 = ¢, + K is split into three consecutive
substeps with 0 := 00K = pO'K,

[ + ON (w"*)u"*? + 0K Vp"*? = [I — POKN (u")]u"

V-utl =0,

[+ ON (w10 4+ 0 KVp"™ 170 = [I — o KN (u"*)Ju"*?

Vourt ot =0, (21)

7+ éN(unJrl)}unJrl + QKVp”“ - BHKN(un+179)]un+176

V-outl =0,
where 0 =1 — %, 0 =1-20,and 0. = %7 =1 — o, N(v)uis a compact form for the diffusive and convec-
tive part,

N(V)u:= —vV - [Vu+ (Vu)'] + (v = W) - Vu. (22)

Therefore, from Eq. (21) in each time step, we have to solve nonlinear problems of the following type:
[ 4+ 0,KN(u)]u+ 0,KVp =1, f:=[—0;KN@u")u", V-u=0. (23)

For Eq. (16)(c), we simply take an explicit expression like,
= U+ o x (X XD). (24)
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4.4. Space discretization by finite element method

If we define a pair {u,p} € H:=H}(Q)xL:=L}(2), and bilinear forms a(u,v):=(Vu, Vv) and
b(p, v) := —(p, V - v), a weak formulation of Eq. (23) reads as follows:

{ (u,v) + 0:K[a(u,v) + n(u,u,v)] + 0,Kb(p,v) = (f,v) VveH, (25)

b(g,u) =0 Vg € L.

Here, L2(Q) and Hj(Q) are the usual Lebesgue and Sobolev spaces, n(u, u, v) is a trilinear form defined by
n(u,v,w) := /Q[u, — (Wm),] (ZZ + 23) w;dx. (26)

To discretize Eq. (25) in space, we introduce a quadrilateral mesh 77}, for the whole computational domain
Q, where /1 is a parameter characterizing the maximum width of the elements of 7). To obtain the fine mesh
T}, from a coarse mesh 7,, we simply connect opposing midpoints. In the fine grid 7}, the old midpoints of the
coarse mesh 75, become vertices. We choose the 01/00 element pair which uses rotated bilinear shape func-
tions for the velocity spanned by (x> — 3%, x, y, 1) in 2D and piecewise constants for the pressure in cells. The
nodal values are the mean values of the velocity vector over the element edges and the mean values of the pres-
sure over the elements rendering this approach non-conforming. This Q1/Q0 element pair has several impor-
tant features. It satisfies the Babuska—Brezzi condition without any additional stabilization, and the stability
constant seems to be independent of the shape and size of the element. In particular on meshes containing
highly stretched and anisotropic cells, the stability and the approximation properties are always satisfied.
In addition, it admits simple upwind strategies which lead to matrices with certain M-matrix properties
[22]. If we choose finite-dimensional spaces Hj, and L, and define a pair {uy, p,} € H;, X L, the discrete version
of (25) reads,

{ (wy, Vi) + 01K [ay (W, Vi) + (W, 0y, v4)] 4+ Kby (py, vi) = (£,v4) Vv, € Hy,
bi(qy,un) =0 Vg, € Ly,

where a; (s, Vi) =3 _rcp, @y, Vi) and by(py, Vi) = > e, b(py, Vi) - Note 71y, (wy, w5, v,) is a new convective
term which includes streamline-diffusion stabilizations defined by

Ay (Wp, Vi, Wy) 1= Z n(uhavhvwh)\T + Z or(w, - Vvj,uy - VWh)\T: (28)

TeT, TeT,

(27)

here 07 is a local artificial viscosity which is a function of a local Reynolds number Rer,

hT 2R€T ||UHT 'hT

Sp = ot T . Rey =4l 29
PRl TR KT )

where [Jullo means the maximum norm of velocity in Qy, |u7 is an averaged norm of velocity over T, /7 de-
notes the local mesh size of T, and 6" is an additional free parameter which can be chosen arbitrarily (6" = 0.1
is used in our calculations, see [22]). Obviously, for small local Reynolds numbers, with Re; — 0, d1is decreas-
ing such that we reach in the limit case the second order central discretization. Vice versa, for convection dom-
inated flows with Rer>> 1, we add an diffusion term of size O(/) which is aligned to the streamline direction
uy.

4.5. Discrete projection scheme

For solving the discrete nonlinear problems after time and space discretizations, we have to take the
following points into account, i.e., treatment of the nonlinearity, treatment of the incompressibility, and
complete outer control like convergence criteria for the overall outer iteration, number of splitting steps,
convergence control, embedding into multigrid, etc. In general, there are (at least) two possible approaches
for solving the discrete problems [24]. One is the so-called full Galerkin schemes: first, we treat the non-
linearity by an outer nonlinear iteration of fixed point- or quasi-Newton type or by linearization via
extrapolation in time, and then we obtain linear subproblems (Oseen equations) which can be solved
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by a direct coupled or a splitting approach separately for velocity and pressure. Typical schemes are pre-
conditioned GMRES-like or multigrid solvers based on smoothers/preconditioners like Vanka, SIMPLE
or local pressure Schur complement (see [22]). The disadvantage of these approaches is the high numerical
cost for small time steps which are typical for particulate flows. Another possibility are the projection-type
schemes: First, we split the coupled problem and obtain definite problems in u (Burgers equations) as well
as in p (pressure-Poisson problems). Then, we treat the nonlinear problems in u by an appropriate non-
linear iteration or linearization technique while optimal multigrid solvers are used for the Poisson-like
problems. Classical schemes belonging to this class are the Chorin and van Kan projection schemes
and the discrete projection method, all of them are well suited for dynamic configurations which require
small time steps (see [25]).

In this paper, based on the latter approach combined with multigrid methods, we adopt the discrete pro-
jection method (DPM) as special variant of the more general multigrid pressure Schur complement (MPSC)
schemes to solve the discrete nonlinear problems after time and space discretizations. A detailed description of
DPM and MPSC schemes has been presented in [22]: we first perform as outer iteration a fixed point iteration,
applied to the fully nonlinear momentum equations. Then, in the inner loop, we solve the corresponding veloc-
ity equations involving linear transport-diffusion problems. Finally, the pressure is updated via a pressure
Poisson-like problem, and the corresponding velocity field is adjusted. Since every time step requires the solu-
tion of linearized Burgers equations and Poisson-like problems, an optimized multigrid approach is used. The
most important components are matrix—vector multiplication, smoothing operator and grid transfer routines
(prolongation and restriction) for the underlying FEM spaces which have been realized in FEATFLOW (see
[22,23] for the details).

4.6. Numerical algorithm

The whole algorithm of the multigrid FEM-FBM and moving mesh methods for the numerical simulation
of rigid particulate flows can be summarized as follows:

1. Given (initial) particle positions X; and velocity U; in the overall domain Q7. Next, we assume that we
have finished the calculations at time ¢,,.

2. Generate a new deformed mesh via the four steps of Egs. (10)—(15).

. Compute the mesh velocity W, by using Eq. (20) based on the new and the previous deformed mesh.

4. Set the fictitious boundary conditions by using Eq. (16)(c) with the ‘old’ particle positions X! and the
velocity U? at time ¢,.

5. By using the FBM and implementing the discrete projection scheme, build the system matrix and solve
the fluid ALE equations of Eq. (27) to get the fluid velocity u”*' and the pressure p" "' at time #,,; on the
full computational domain Q7.

6. Calculate the hydrodynamic forces Fl’.'+1 and T""' exerted on every particle (i=1, ...,N) by using the
volume integration formulation of Eq. (18).

7. When two particles come too close, the time step has to be reduced. Then, we adopt several substeps with
Aty =K/A (k=1,...,4, A is the number of substeps calculations, K = t,.+; — 1,,) for calculating the col-
lisions and updating the particle positions and velocities during the collisions. Set U := U’ and

W

X=X,
8. Determine the number of substep calculations A by
1 if (di=f)min = (Rl +Rj)max’
= C_R—R, . 30
MIN{lO, 1+ MAX (W”—I:IR,l)} if (di=j)min < (Rl +Rj - Q)max’ ( )

where @ is the maximum penetration distance to be allowed (maximal overlapping range).

9. By using the Newton—Euler equations of Eq. (5) to calculate the motion of the solid particles, we obtain
the new interim particle position Xf“/ > and velocity U;”l/ >k as well as the new angular velocity !
and angle 0/ by
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AM;g F' 4+ F!
U;’l+1/2’k = U;l’k + ( lg+ ! + ! )At]m

Ml‘ 2Mt
AM,g F' +F"!
™ T'.H—l " i+l
w:t+l _ wln 4 (%)K, 0;'+1 = 07 + <GH%)K

Use the collision model of Egs. (7) and (8) to calculate the repulsive forces (F))

ticle position X! /%%,

(31)
(32)

(33)

with the interim par-

Update the particle positions and the velocity by the repulsive forces to obtain the new particle position

Xl’.’“’k and the velocity U;.’“’k at time 7,4, by
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(b) Deformed mesh (LEVEL = 4)

Fig. 3. Different meshes adopted for flow around a fixed circular cylinder.

Table 1

Drag and lift coefficients for flow around a fixed circular cylinder with Re = 20 by using equidistant meshes

LEVEL NVT NEL Drag coefficient Cy4 Lift coefficient VEF (%) CPU
4 561 512 4.44688 —0.0649815 91.643 0.8
5 2145 2048 5.31808 —0.3508040 97.697 3.0
6 8385 8192 5.50358 —0.0093675 99.261 12.0
7 33,153 327,68 5.50585 0.0312388 99.842 54.6
8 131,841 131,072 5.53049 0.0239737 99.958 375.0
Reference values Cq=5.5795 (C;=0.010618

Table 2

Drag and lift coefficients for flow around a fixed circular cylinder with Re = 20 by using deformed meshes

LEVEL NVT NEL Drag coefficient Cy Lift coefficient C VEF (%) CPU
4 561 512 6.25486 0.0682610 99.332 1.3
5 2145 2048 5.72950 0.0297392 99.788 4.0
6 8385 8192 5.61971 0.0291702 99.946 14.0
7 33,153 32,768 5.58139 0.0118296 99.985 76.0
8 131,841 131,072 5.57706 0.0104031 99.997 402.0

Reference values Cq=5.5795 (;=0.010618
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(b) Deformed mesh (¢ = 21)

Fig. 4. Deformed meshes for one oscillating circular cylinder in a channel.

(a) Local vector field (¢ = 18.9) (b) Local vector field (t = 21.0)

(e) Norm of velocity (£ = 18.9)

(d) Norm of Velocity (¢ = 21)

(e) Local vorticity values (& = 18.9) (f) Local vorticity values (¢ = 21)

Fig. 5. Oscillating circular cylinder in a channel.
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F{)n+1 . (F/')rH»l 5
T P R T L) YA
1 1 + Mi k> 1 1 + Mi ( k)
12. Set UM .= Ut and X .= X" if k < A, and repeat steps 9-12.
13. Set UM := U/ and X0 = X7,

14. Advance to the next new time step, set ¢, := #,+; and repeat steps 2—14.

5. Numerical results

41

First of all, a benchmark configuration of 2D flow around a circular body in a channel is given to assess the
suitability and accuracy of the hydrodynamic force calculations based on the combination of the multigrid

Reference, see Ref. [10]
— — — - Def Grid, Level=8, NEL=131072
<<<<<<<<< Def Grid, Level=7, NEL=32768
— — — Def Grid, Level=6, NEL=8192

Def Grid, Level=5, NEL=2048
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&

Fig. 6. Drag coefficients for one oscillating circular cylinder in a channel.
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Fig. 7. One 2D circular ball falling down in a channel.

(a) £ =0.30 (b) ¢t =048 - (¢) t =0.30 (d) t =0.48
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FBM and the new moving mesh technique. Then, three cases of a single moving particle in the fluid are pre-
sented to further validate the improvement of accuracy and efficiency using the presented method. Finally, the
drafting, kissing and tumbling of two disks in a channel and the sedimentation of 120 circular particles in a
cavity are provided to show that the presented method can be easily implemented for the simulation of par-
ticulate flows with large number of particles. Since we have used a prototypical implementation of the new
mesh deformation method only, efficiency considerations are of only preliminary type while we concentrated
more on the validation and accuracy aspects of the new FEM—-ALE fictitious boundary method for particulate
flows.

5.1. Benchmark experiment

We first consider a benchmark case of flow around a fixed circular cylinder in a channel as described in [26].
The channel height is H = 0.41, length L = 2.2, the cylinder diameter D = 0.1. The center point of the cylinder
is located at (0.2,0.2). The Reynolds number is defined by Re= UD/v with the mean velocity
U =2U(0,H/2,1)/3. The kinematic viscosity of the fluid is given as v = ug/ps = 10 and its density p;= 1.
The inflow profiles are parabolic U(0,Y,7) = 6.0UY(H — Y)/H, with U = 0.2 such that the resulting Rey-
nolds number is Re = 20 which leads to steady-state solutions.

Fig. 3 shows the equidistant and deformed (static) meshes employed in our calculations, in which the circle
shows the position of the cylinder. The shown meshes are successively refined by connecting opposite mid-
points. The deformed mesh is generated from the equidistant mesh, but it has more grid nodes and elements
concentrated and aligned around the surface of the cylinder. In Tables 1 and 2, the characteristics of these
meshes after several global refinements are given. The meaning of “LEVEL” is the number of refinements,
“NVT” the number of vertices, and “NEL” the number of elements, “VEF” the ratio of the effective cylinder
area covered by the fixed mesh through the fictitious boundary method w.r.t. the real cylinder area, “CPU”’
the typical CPU time needed (DELL Precision Workstation 670, 2.66 GHz) for reaching steady-state.

Tables 1 and 2 present the computed results by using the equidistant meshes and deformed meshes, respec-
tively. The corresponding reference results of drag and lift coefficients for this benchmark problem are also
listed in these tables for comparison. From the tables, we can see that all results of drag and lift coefficients
are converging w.r.t. mesh refinement except those for the lift coefficients when using equidistant mesh. The
results for the deformed meshes are much better and more accurate than those for the equidistant meshes. For
the deformed mesh cases, on LEVEL = 6 with only NEL = 8192, quite satisfying results have already been
obtained. Obviously, the accuracy is improved by using the grid deformation techniques. Moreover, the effec-
tive area ratio of the cylinder captured by the deformed mesh lines has reached more than 99% in LEVEL = 4,

Def Grid, Level=6
— — — Def Grid, Level=7

Def Grid, Level=6 I
— - — - Def Grid, Level=7 I
— — — - Equi Grid, Level=6
Equi Grid, Level=7

— — — - Equi Grid, Level=6 ol
A Equi Grid, Level=7 ]

ot

_4t

-6

_8t

0 0.1 0.2 0.3 0.4 0.5 0.6 "o 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 8. Time history of y-position and v-velocity component of the center of the falling ball.
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while it requires LEVEL = 6 for equidistant meshes. For CPU time, about 10% time is increased for the cases
of the deformed meshes over the equidistant mesh on the same level due to additional time needed for the
deformed mesh generation. However, the main CPU time is still needed for the fluid-solid part, not for the
part of deformed mesh generation. Moreover, in the deformed mesh cases, we can adopt a lower level mesh
which can obtain high accuracy results but only small CPU time increases compared to the case of equidistant
meshes. For example, for the deformed mesh in LEVEL = 7, very accurate results of force calculations are
possible and only 76 s CPU is needed, while for the equidistant mesh in LEVEL = 8§, the CPU time of
375 s is required but the results of force calculations are still not so accurate. Hence, it shows that the
deformed mesh can significantly improve the force calculations.

5.2. One oscillating circular cylinder in a channel

Next, an oscillating circular cylinder in a channel with a prescribed velocity is considered. The channel
height is H =0.41, length L = 2.2, the cylinder diameter D = 0.1. The center point of the cylinder is located
initially at (1.1, 0.2).

The prescribed velocity for the cylinder is given by u = 2nf'4 cos(2nft), A = 0.25, f=0.25, v =0, and no-
slip velocity conditions are imposed at the two walls, inlet and outlet of the channel. The kinematic viscosity
of the fluid is given by v = ug/pr= 1072 and its density ps= 1. The fluid in channel is initially at rest.

The deformed meshes are generated by using the moving mesh method in every time step in order to align
the mesh around the surface of the moving cylinder. Fig. 4 gives two snapshot results at = 18.9 and 1 = 21 of
the deformed meshes, and Fig. 5 presents the corresponding local vector field, norm of velocity and local vor-
ticity distribution, respectively. These pictures show that the flow in the channel is disturbed by the oscillating
cylinder, and the vortex is generated periodically in the wake of the cylinder. Fig. 6 illustrates the comparison
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Fig. 9. Time history of the effective area ratio of the falling ball.
Table 3

CPU time for one time step and storage for one falling ball

LEVEL Equidistant mesh Deformed mesh
CPU time Storage (MB) CPU time Storage (MB)
4 0.11 0.15 0.13 0.19
5 0.53 0.71 0.61 0.76
6 1.89 2.97 2.36 3.10
7 7.36 11.82 8.95 12.83
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of the computed drag coefficient C4 by the presented method with the reference result based on the body-fitted
mesh (see [10]). The results calculated from LEVEL =5 to LEVEL = 8 and the parameters of the number of
elements “NEL” for each refinement level are all shown together. From the comparisons, we can see that the
presented results are identical with increasing the mesh refinement, and they agree very well with the reference
results. On the deformed mesh of LEVEL =5 with 2048 elements, very good results have already been
reached.
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Fig. 10. Initial mesh and deformed meshes during the simulation of the induced rotation of a NACAO0O012 airfoil in a channel.
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5.3. One 2D circular ball falling down in a channel

The computational domain is a channel of width 2 and height 6. A rigid circular ball with diameter d = 0.25
and density p, = 1.5 is located at (1, 4) at time # = 0, and it is falling down under gravity in an incompressible
fluid with density ps = 1 and viscosity v = 0.1, with gravitational acceleration constant g = —980. We suppose
that the ball and the fluid are initially at rest. The simulation is carried out on fixed equidistant meshes and
moving deformed meshes, respectively, each of them having two different level, i.e., LEVEL = 6 with 12,545

—+— — Def Grid, Level=7 for 6 —+— - — Equi Grid, Level=7 for 6
Def Grid, Level=8 for 6 Equi Grid, Level=8 for 6
Def Grid, Level=7 for ® Equi Grid, Level=7 for o

— — — - Def Grid, Level=8 for ® — — — - Equi Grid, Level=8 for ®

0.5

0.5

I
,.f,u‘!l )
\

o /
, TS
t . U

i
1

6 and ©
6 and ®

(a) Deformed meshes (b) Equidistant meshes

Fig. 11. Time history of the angle of incidence 0 and angular velocity o for a rotating NACAO0012 airfoil in a channel.
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Fig. 12. Local value distributions for the rotating NACAO0012 airfoil in a channel.
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nodes and 12,288 elements, as well as LEVEL = 7 with 49,665 nodes and 49,152 elements which provide suf-
ficiently accurate results.

Fig. 7 gives two snapshots at z = 0.30 and ¢ = 0.48 of the deformed meshes and the corresponding vector
fields, respectively. Fig. 8 presents the comparison of the time history of the y-coordinate and v-velocity com-
ponent of the center of the ball by using equidistant meshes and deformed meshes, each of them are calculated
by the mesh levels LEVEL = 6 and LEVEL = 7, respectively, both leading to convergent results with refining
the mesh. If we compare these results with those obtained by Glowinski [8